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ABSTRACT
High performance general-purpose processors are increasingly
being used for a variety of application domains { scienti�c,
engineering, databases, and more recently, media processing.
It is therefore important to ensure that architectural features
that use a signi�cant fraction of the on-chip transistors are
applicable across these di�erent domains. For example, cur-
rent processor designs often devote the largest fraction of
on-chip transistors (up to 80%) to caches. Many workloads,
however, do not make e�ective use of large caches; e.g., me-
dia processing workloads which often have streaming data
access patterns and large working sets.

This paper proposes a new recon�gurable cache design. This
design enables the cache SRAM arrays to be dynamically di-
vided into multiple partitions that can be used for di�erent
processor activities. These activities can bene�t applications
that would otherwise not use the storage allocated to large
conventional caches. Our design involves relatively few mod-
i�cations to conventional cache design, and analysis using a
modi�cation of the CACTI analytical model shows a small
impact on cache access time. We evaluate one representative
use of recon�gurable caches { instruction reuse for media
processing. We �nd this use gives IPC improvements rang-
ing from 1.04X to 1.20X in simulation across eight media
processing benchmarks.

�This work is supported in part by an IBM Partner-
ship award, Intel Corporation, the National Science Foun-
dation under Grant No. CCR-9502500, CDA-9502791,
CDA-9617383, and CCR-0096126 and the Texas Advanced
Technology Program under Grant No. 003604-025. Sarita
Adve is also supported by an Alfred P. Sloan Research Fel-
lowship.

1. INTRODUCTION
Current high performance general-purpose processors are
used for a variety of application domains, including scien-
ti�c, engineering, transaction processing, and decision sup-
port. More recently, media processing applications have re-
ceived signi�cant attention. Media processing applications
have challenging computational requirements and could use
orders-of-magnitude higher performance than available to-
day. In the past, they were run on specialized DSP pro-
cessors or ASICs. However, the bene�ts of general-purpose
processors in terms of easier programmability, upgradabil-
ity, and higher performance growth curves argue for the in-
creased use of such systems for media processing.

Several quantitative characterizations have shown that ap-
plications from di�erent domains exhibit di�erent character-
istics [5, 11, 15, 19]. A handicap for general-purpose systems
is that they must perform well enough across all such char-
acteristics. As these systems are used for an increasingly
wide variety of applications, a \one-size-�ts-all" design phi-
losophy will be inadequate. Current system designs often
include special features targeted to certain key applications;
however, often, these features are implemented in a rigid
manner and their resources are wasted for applications that
cannot directly utilize them. For example, the use of large
caches is a common trend across general-purpose systems,
sometimes consuming up to 80% of the total transistor bud-
get and up to 50% of the die area [9]. While large caches are
e�ective for a variety of conventional workloads, they are of-
ten ine�ective for media processing applications because of
the streaming nature of data accesses and the large working
sets in these applications [19].

An alternative design philosophy is to build some 
exibility
in the system so that features that use a large number of
resources can be used in di�erent ways by di�erent applica-
tions. We apply this philosophy to the design of caches and
propose a new cache organization that we call recon�gurable
caches. The idea of recon�gurable architectures itself is not
new; however, conventional recon�gurable architectures typ-
ically involve large changes in both hardware and software.
In contrast, our recon�gurable cache design continues to use
a conventional cache design with minor hardware and soft-
ware changes.
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We propose a recon�gurable cache organization that allows
the on-chip SRAM to be dynamically divided into di�erent
partitions that can be assigned to di�erent processor ac-
tivities other than conventional caching. For example, the
partitions could be used as hardware look-up tables for tech-
niques such as instruction reuse and hardware prefetching,
or as storage area for prefetched information, or as compiler-
controlled memory. Thus, the cache SRAM storage can ben-
e�t applications that would not otherwise exploit large con-
ventional caches.

In our model the recon�gurability is implemented in custom
hardware at design time. This is in contrast to an approach
that might use hardware similar to �eld-programmable gate-
arrays (FPGAs). While useful in many applications, the
ability to dramatically change the programming of FPGAs
in the �eld results in FPGA clock cycle times that are typ-
ically 4 to 6 times slower than that obtained in full-custom
microprocessors. Instead, we support a limited number of
possible con�gurations (e.g., two or three) which are incor-
porated into the circuit design and veri�ed as part of the
original microprocessor design.

The paper �rst discusses several applications of recon�g-
urable caches (Section 2). It then discusses the organiza-
tion (Section 3) and design (Section 4) of the recon�gurable
cache. Two key design challenges are determining how to
partition the cache SRAM array and how to address the
di�erent partitions as they change, without signi�cantly af-
fecting access time. The primary design proposed in this
paper addresses these challenges by exploiting the design
and implementation of conventional set associative caches
using two insights. First, di�erent ways of a set associative
cache can be used to form di�erent partitions, enabling the
use of the conventional cache addressing mechanism with
minor modi�cations. Second, conventional cache SRAM ar-
rays are also implemented as multiple subarrays to reduce
and balance the length of wordlines and bitlines. We con-
tinue to use such a subarray organization for our partitions,
possibly with di�erent number and dimensions of the subar-
rays. We extend the CACTI analytical model [25] to show
that our modi�cations do not signi�cantly impact the cache
access time for several con�gurations.

To provide quantitative evidence of the bene�ts of recon�g-
urable caches, we evaluate instruction reuse for media pro-
cessing as a representative application of a recon�gurable
cache (Section 5). We use detailed simulation to study eight
media processing benchmarks. Our results show that us-
ing recon�gurable caches for instruction reuse achieves im-
provements in IPC ranging from 1.04X to 1.20X across our
benchmarks.

2. POTENTIAL APPLICATIONS OF RECON-
FIGURABLE CACHES

Some of the possible applications for recon�gurable caches
are discussed below. We speci�cally discuss how these ap-
plications are relevant to the domain of media processing;
however, codes from other domains can bene�t from these
as well.

Hardware optimizations using lookup tables or bu�ers.

Several hardware optimizations have been proposed that re-

quire maintaining lookup tables or bu�ers, where the ef-
fectiveness of the optimization improves signi�cantly with
larger table sizes. For example, value prediction, memo-
ization, and instruction reuse have recently been studied
to exploit redundancy in computation in the SPEC bench-
marks [7, 12, 13, 22, 23, 24]. Other optimizations that re-
quire large lookup tables or bu�ers include coherence predic-
tion, memory disambiguation prediction, compression-based
branch prediction, hardware prefetching (where lookup ta-
bles are used to store information for address prediction),
and dynamic optimizations triggered by performance infor-
mation collected and stored in tables at runtime. Several
of these techniques have been reported to have the capacity
to perform better with larger lookup table spaces [22, 23].
The lookup tables and bu�ers for these optimizations could
be implemented in a partition of a recon�gurable cache in-
stead of using other valuable chip area. Section 5 studies one
such technique, instruction reuse, with recon�gurable caches
to address the computation bottleneck in media processing
workloads.

Software and hardware prefetched data. Software and
hardware prefetching are widely used techniques to hide
memory latency. However, if the prefetched data is fetched
too far in advance, it can pollute the cache replacing other
useful data or be replaced before use by a demand access,
eliminating any performance bene�ts. On the other hand,
prefetches that occur too late do not fully hide the latency.
Therefore, prefetching techniques need to strike a careful
balance when scheduling the prefetches, but are often unsuc-
cessful in doing so. With recon�gurable caches, a separate
partition can be used to prefetch data early while avoiding
the problem of cache pollution or replacement of prefetched
data. Such an application of recon�gurable caches could be
particularly useful with media processing benchmarks which
often have streaming behavior [19].

Compiler or application controlled memory. A par-
tition of a recon�gurable cache could be con�gured as com-
piler or application controlled memory. As discussed in [4],
the compiler could use such memory as a scratch area for
spill code to achieve performance bene�ts. Alternatively,
this area can be used by system code or device drivers as a
separately addressable bu�er area. Such a use may also be
bene�cial in ensuring real-time requirements of media ap-
plications with general-purpose processors. Many DSP pro-
cessors hardwire their on-chip SRAM to be used as memory
(as opposed to caches) to ensure predictability of memory
latencies [6]. Cache line locking (as in the Cyrix MediaGX
processor [14]) or controlled cache line replacement (as with
malleable caches [3]) can provide the same functionality.

3. CACHE ORGANIZATION
Recon�gurable caches require a cache organization that al-
lows the on-chip SRAM cache storage to be dynamically par-
titioned and reused for other processor activities requiring
storage. There are several aspects to such an organization
with multiple design options and tradeo�s, discussed next.

3.1 Partitioning and Addressing
The key challenge in designing a recon�gurable cache is to
devise a mechanism to divide the SRAM storage into dif-
ferent (possibly variable-sized) partitions, and to e�ciently
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Figure 1: Associativity-based partitioning organization for recon�gurable caches

be able to address these partitions. In particular, the ad-
dressing scheme must e�ciently adapt to dynamic resizing
of the partition sizes. Below, we �rst discuss a scheme based
on cache associativity that is used in the rest of this paper.
We then discuss an alternative that does not rely on cache
associativity.

Associativity-based partitioning. Our primary design
exploits set-associativity in current cache organizations. To
understand the design, we brie
y revisit a conventional set-
associative cache organization. Figure 1(a) depicts the block
diagram for the (conceptual) organization of a single-ported
2-way set-associative conventional cache. An N -way set as-
sociative cache is divided into N data and tag arrays, and
each of these N pairs is referred to as a way. The index part
of the input address is used to index all the ways of the data
and tag array. The tag part of the input address is sent to
the comparators of all the ways to determine if there is a
match with any of the tags read from the tag array. If there
is a match, a hit is signaled on the valid output line and
data from the corresponding way of the data array is sent
onto the output data lines.

The recon�gurable cache builds on the above organization
in a natural way, as depicted in Figure 1(b). We divide
the recon�gurable cache into partitions at the granularity
of the ways of the conventional cache, exploiting the con-
ceptual division into ways already present in a conventional
cache. For example, at the �nest granularity, a 4-way set-
associative 1MB cache can be dynamically recon�gured into
4 partitions of 256KB each, with each way in a separate par-
tition. At coarser granularities, a partition of such a cache
may contain two ways (for a total of 512KB organized as a
two-way set-associative partition) or three ways (for a total
of 768KB organized as a three-way set associative partition).
In each case, the same bits of the address �eld would be used
as tag, index, and block o�set bits. In the 1MB cache exam-
ple above, assuming 64 byte cache lines, the last 6 bits of the
address are used for the block o�set, the next 12 to index
each way, and the remaining for the tag. The only changes
to the conventional cache organization are as follows:

- Multiple input and output paths. A recon�gurable cache
with up to N partitions must accept N input addresses
and generate N output data elements with N hit/miss
signals (one for each partition). Section 4 discusses
a design that can achieve this without increasing the
number of cache ports.

- Cache status register. The current partitioning of the
cache controls which of the N input addresses is used
to index a speci�c way and to perform the tag match
at the comparator of that way. Similarly, for the ways
that produce data hits, the current partitioning deter-
mines which of theN output data paths should get this
data and which of the N hit/miss lines should be sig-
naled as a hit. A special hardware register called the
cache status register is therefore maintained to track
the number and sizes of the partitions and control the
routing of the above signals. The cache status reg-
ister is part of the processor state and needs to be
preserved across context switches similar to any other
control register.

From the processor's viewpoint, the various partitions can
be addressed either implicitly for internal hardware activ-
ities (e.g., value prediction lookup tables) or explicitly for
software-controlled use (e.g., compiler-controlled memory).
The latter would require some ISA support to indicate the
correct partition that the memory accesses need to be routed
to (e.g., an approach similar to the address space identi�ers
could be used).

The above set-associativity based partitioning approach has
at least three advantages. First, it requires only small changes
to the current well-understood set-associative cache organi-
zation. Second, the mechanism for addressing the cache ar-
rays scales well with the dynamic repartitioning of the cache.
Third, this organization keeps requests for the di�erent par-
titions isolated from each other, and so does not introduce
any additional contention for the SRAM ways. However,
the key drawback with this approach is that the number and
granularity of the partitions are limited by the associativ-
ity of the cache. Larger or smaller granularity partitioning
needs a higher-order associativity of the base cache which
could increase cache access time and tag storage space. An
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Figure 2: Overlapped wide-tag partitioning organization for recon�gurable caches

alternative organization that is slightly more complex but
does not su�er from the above drawback is discussed next.

Overlapped wide-tag partitioning. The overlapped wide-
tag partitioning approach does not require a set-associative
cache organization. The dark-shaded regions in Figure 2(b)
indicate the additional changes to be made to the conven-
tional direct-mapped cache organization in Figure 2(a). Since
the number of bits in the index and tag �elds of the address
vary based on the size of the partition, the size of the tag
array in the cache SRAM also needs to change dynamically
with the size of the partitions. The wide-tag organization
extends the current SRAM tag array to account for the max-
imum variation in the tag size with di�erent partition sizes.
For example, for a direct-mapped 1MB cache which supports
multiple partitions each of which is at least 256KB large,
the tag array would be extended by an additional two bits
to support the the maximum possible tag length required
by the 256KB partitions. Though the cache partitions can
potentially be any size, we limit them to be powers of two
to enable simpler decoding. When the data is read from
the cache, the additional logic shown in Figure 2(b) ensures
that only the bits of the index and tag corresponding to the
size of the particular partition are used for the cache access.
This logic can be relatively simple.

3.2 Maintaining Data Consistency
Recon�gurable caches need a mechanism to ensure that after
recon�guration, the data belonging to a particular processor
activity resides only in the partition associated with that
particular activity. We discuss two approaches to ensure
this below.

Cache scrubbing. This approach uses the partitioning
information in the cache status register to ensure that at
the time of recon�guration, appropriate data gets moved
between partitions or the data is moved from the cache to
lower levels of memory. Such a cache-scrubbing approach
requires examining all the locations of the cache to check
for their validity and performing suitable actions on valid
data at recon�guration. For example, for a partition trans-
formed from a cache to another activity, valid data needs to
be sent to another partition used as cache or to lower levels

of memory. Some applications such as compiler-controlled
memory may require intervention at the operating system
level to ensure that data is kept consistent. For partitions
used as lookup tables for speculation, data consistency is
not as critical an issue; not initializing the data to the cor-
rect values would just result in a longer \cold-start" period.
Cache scrubbing can potentially incur a high recon�gura-
tion overhead, but can be acceptable in cases of infrequent
recon�guration such as at the start of the application. For
example, for the 128KB L1 cache with 64 byte cache lines
in Section 5, assuming a fully pipelined 20-cycle L2 cache
and support for 12 outstanding writebacks, the time taken
to write all the 2048 cache lines to the L2 cache is less than
3500 cycles. In practice only a smaller fraction of these 2048
cache lines will have to be written back to the cache.

Lazy transitioning. In some cases, more frequent recon�g-
uration may be desirable (due to frequent context switches
between applications or aggressive adaptive recon�guration
for the same application). For such cases, an alternate
scheme is possible where data is lazily moved into its correct
partition only when it is accessed. For such a scheme, the
state information associated with a cache line needs to be
augmented with information on the processor activity asso-
ciated with that line. For example, for 4 partitions for the
128KB L1 cache in Section 5, if di�erent activities are as-
sociated with each partition, this would require about 512
bytes of extra state storage. In addition to the normal tag
lookup, this technique requires the processor activity state
to also be validated before the data is considered a hit. On a
miss in the appropriate partition, other partitions need to be
checked to determine if the data is still in those partitions.
This approach can reduce the high overhead associated with
moving large amounts of data at recon�guration time and
increase the data hit rates in the partitions; however, these
bene�ts come at the expense of increased state storage, a
more complex implementation, and possible increased con-
tention for the SRAM partitions.

3.3 Reconfiguration Policy and Detection
The third issue that needs to be addressed is the policy and
detection mechanism for when to recon�gure. Repartition-
ing may occur infrequently (e.g., just once at the start of



Design Issue Options Used in this paper
Partitioning mechanism Overlapped wide-tag vs. Associativity-based Associativity-based
Address generation for non-cache partitions Hardware vs. Software generated Hardware generated
Data consistency Cache scrubbing vs. Lazy transitioning Cache scrubbing
Repartitioning policy Frequent vs. Infrequent Infrequent
Detection mechanism for recon�guration Software vs. Hardware control Software control
Recon�gurable cache level L1, L2, or lower levels L1

Table 1: Recon�gurable cache organization choices.

the application) or frequently (e.g., at the beginning of cer-
tain loops), depending on the characteristics of the applica-
tion and the processor activities for which the recon�gurable
cache is used. The mechanism to detect when to recon�g-
ure can be software or hardware controlled. A software-
controlled approach can expose the cache status register to
the code-generator (user or compiler) which can use infor-
mation about the program behavior to invoke appropriate
recon�guration at the appropriate points in the program.
Alternately, a hardware-controlled approach could use hard-
ware performance monitoring support (e.g., DCPI [2]) to au-
tomatically decide when and how to change the partitions.

3.4 Reconfigurable Cache Level
The �nal issue with the recon�gurable cache organization
is the level that is recon�gurable in a multi-level cache hi-
erarchy. The cache organization described above does not
preclude its application to any level. Tradeo�s in terms of
the size, granularity, access time, and usage of the partitions
will determine the level to partition.

3.5 Options Used in This Paper
Table 1 summarizes the various aspects of the recon�gurable
cache organization and gives the con�guration we study
in this paper. Speci�cally, we study a hardware-addressed
associativity-based partitioning approach with software con-
trol for infrequent recon�guration and cache scrubbing to
ensure consistency of data. We apply this con�guration to
the L1 cache in Section 5. This con�guration represents
a simple organization that is likely to achieve most of the
performance bene�ts for the applications discussed in Sec-
tion 2.

4. DESIGN AND IMPLEMENTATION
Sections 4.1{4.3 �rst discuss a more detailed implementa-
tion of the recon�gurable cache organization discussed in
Section 3.5. Section 4.4 then uses a modi�cation of the
CACTI model for a detailed timing analysis of a recon�g-
urable cache.

4.1 Conventional Cache Implementations
Figure 3 shows a typical implementation of the internal
structure of a conventional SRAM cache. The numbered
shaded blocks refer to the changes needed for recon�gurable
caches and are discussed in subsequent subsections.

The key components are the data and tag arrays. The ar-
rays consist of the storage cells, the horizontal wordlines
that enable a single row of cells, and the vertical bitlines
that transfer data from the selected cell of a column. A
straightforward implementation of the data (or tag) array
would have S rows and 8BA columns of storage cells, where
S is the number of sets in the cache, B is the line size in bytes,

and A is the associativity. This implementation, however,
would incur large cache access times because of the long
and unbalanced wordline and bitline delays. Instead, ex-
isting implementations divide both the data and tag arrays
into multiple subarrays, as shown in Figure 3. In this paper,
we use the CACTI timing model [20, 25] to identify the op-
timal values for the dimensions of the subarrays. Note that
a row of a subarray can have cells from multiple ways of the
same set.

Other components of the cache and the various delay com-
ponents that comprise the operation of a cache (as modeled
by CACTI) are as follows. A decoder for each SRAM subar-
ray �rst decodes the address (incurring a decoder delay) and
selects the appropriate subarray row by driving one word-
line in the array (wordline delay); only one wordline in each
subarray can be high at a time. Each memory cell along
the selected row is associated with a pair of bitlines that is
initially precharged high. When a wordline goes high, the
memory cell in that row pulls down one of its bitlines which
determines the value stored in the cell (bitline delay). If a
bitline is shared between multiple columns or subarrays, a
column multiplexor is used to choose the relevant bit lines
for the particular SRAM access (column multiplexor delay).
A sense ampli�er is used to detect which line goes low and
determine the value in the memory cell (sense ampli�er de-
lay). For the tag array, the information read from the various
ways is compared to the tag bits of the address (comparator
delay). The results of these comparisons are used to drive a
valid output signal that indicates whether there is a hit or
a miss (valid output driver delay). If the cache access was a
hit, in a set associative cache, the results of the comparisons
also choose the correct data from the data array (select and
data output delays). Depending on the cache con�guration,
the critical path could be either through the tag array or
through the data array. The cache access time is the sum
of the delays on the critical path (obtained by adding the
appropriate delay components discussed above).

4.2 SRAM Partitioning for Reconfigurability
As discussed above, current cache implementations already
partition the cache array into multiple subarrays. The parti-
tioning required for recon�gurable caches can therefore nat-
urally exploit this structure. A key di�erence between a
conventional and recon�gurable cache, however, is that dif-
ferent partitions in the latter need to be indexed by di�er-
ent addresses. Therefore, the cache ways corresponding to
di�erent partitions must be implemented in physically dif-
ferent subarrays of the cache; i.e., there must be at least as
many subarrays as the maximum number of partitions. In
contrast, in a conventional set-associative cache, for a given
set, all or some of the ways of the set can potentially be
implemented within a single subarray. Thus, it may not
be possible to implement a recon�gurable cache with the
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tions required over a conventional cache design.

number and dimensions of subarrays that would have been
optimal for a conventional cache.

In general, a recon�gurable cache will require an equal or
greater number of subarrays than a non-recon�gurable cache.
An increase in the number of subarrays can have the follow-
ing e�ects: (i) if the number of subarrays is larger, the wire
area and delay required to connect them will be larger, and
(ii) a larger number of subarrays results in a reduction in
the number of bits in each subarray, which means the in-
dividual subarray access times are reduced. The increase
in wiring delay with increasing numbers of subarrays tends
to balance the decreasing delay with decreasing numbers of
bits per subarray. This yields a delay curve vs. the number
of subarrays that has an optimum value. The curve tends to
have a fairly shallow minimum, in that con�gurations with
similar numbers of subarrays tend to be close to the opti-
mum. This means that a modest increase in the number
of subarrays to support recon�guration over a design point
that is optimum for a non-recon�gurable design usually re-
sults in only a modest increase in delay.

One alternative to using a di�erent organization of subarrays
would have been to increase the number of ports on each
subarray. However, additional ports can be very expensive:
for example going from a single ported memory to a true
dual-ported memory can almost double the required cache
area and signi�cantly increase its access time and power
dissipation. Thus we do not further consider the provision
of recon�gurability through additional cache ports in this
paper.

4.3 Additional Logic for Reconfigurability
Multiplexors at the address decoders. Each address decoder
needs to be preceded by a multiplexor (marked 1 in Figure 3)
that selects the correct address to forward to a subarray,
based on the current partitioning speci�ed in the cache sta-
tus register. The additional multiplexor delay increases the
total decoder delay time. Additionally, the latency of the
previous stage is increased because of the extra capacitive
load imposed by the multiplexor drain capacitances. The
decoder driver also needs to be duplicated at the output of
each multiplexor.

Multiplexors at the tag comparators. Analogous to the mul-
tiplexers before the address decoders, multiplexors need to
be added before the inputs of the tag comparators to route
the tag bits from the correct input address (marked 2 in
Figure 3). However, this typically does not a�ect the crit-
ical path of the cache access as the delay for the tag bits
from the input addresses to reach the comparators is less
than the delay for the tag information to arrive from the
tag subarrays.

Additional multiplexor drivers and output drivers. The re-
con�gurable cache needs to generate multiple hit/miss sig-
nals and send back multiple data elements to the processor
(one for each currently invoked partition). Therefore, the
outputs of the comparators now need to drive multiple mul-
tiplexor drivers and output drivers (marked 3, 4, and 5 in
Figure 3) corresponding to the various partitions.

Additional wiring. Additional wiring needs to be routed
from the cache to the processor for the data paths for the



128KB caches, 64B lines
8-way 4-way 2-way

ns � ns � ns �
base 2.78 - 1.85 - 1.59 -
2-part 2.85 3% 1.92 4% 1.65 4%
4-part 2.98 7% 2.04 10% - -
8-part 3.20 15% - - - -

1MB caches, 64B lines
8-way 4-way 2-way

ns � ns � ns �
base 5.02 - 3.52 - 3.40 -
2-part 5.08 1% 3.56 1% 3.43 1%
4-part 5.11 2% 3.64 3% - -
8-part 5.34 6% - - - -

Table 2: Recon�gurable cache access times for

0.13�m technology. The base con�guration repre-

sents the conventional non-con�gurable system; con-

�gurations 2-part, 4-part, and 8-part represent sys-

tems with 2, 4, and 8 partitions respectively. �
gives the access time increase over a conventional

non-recon�gurable cache organization.

various partitions. This is similar to the data wires for the
original cache. It will add to the complexity of routing, and
modestly increase the area, delay, and power of the cache.

4.4 Impact on Cache Access Time
We use version 2.0 of the CACTI (Cache access and cycle
time) model [20]1 to study the impact of the recon�gurable
cache organization on the cache access time of the system.

Table 2 summarizes our results for cache sizes of 128KB and
1MB for a 0.13�m process technology (our results for other
process technologies were qualitatively similar). For each
cache size, three columns are shown for associativity 2, 4,
and 8 respectively. For each set-associative con�guration,
the number of partitions is varied from 2 to the maximum
number of partitions allowed (equal to the associativity of
the cache), in powers of 2.

Our results show that for the various cache sizes, associativi-
ties, number of partitions, and process technologies studied,
changing existing cache organizations to a recon�gurable
cache organization can increase the cache access time by
anywhere between 1% to 15%. For small numbers of par-
titions (2-way), recon�gurable caches usually increase the
access time of the non-con�gurable baseline cache by less
than 5% (4% for a 128KB cache and 1% for a 1MB cache).
For larger numbers of partitions (4-way and 8-way), recon-
�gurable caches su�er a relatively larger cache access time
penalty, particularly for smaller cache sizes (7-15% for the
128KB cache and 2-6% for the 1MB cache).

1The CACTI model assumes a physically-addressed cache
with a two-region circuit model approximation; a more ag-
gressive model could use a virtually addressed cache with
TLB support and more complex timing models such as a
four-region model [16]. However, for the �rst-level cache
con�guration we study in this paper, we do not anticipate
these changes to make a qualitative di�erence to our results.

Sensitivity to cache size. The increase in cache access
time is maximum for the smaller cache sizes. As the cache
size is increased, the access time increases, and consequently,
the impact of recon�gurable caches is a smaller fraction of
the total access time. Also, due to the large number of sub-
arrays usually required in larger caches, the change required
to support recon�guration is reduced.

Sensitivity to number of partitions. Across all our con-
�gurations, the cache access time increases with the num-
ber of partitions because of increased delays in driving ad-
ditional loads at the multiplexors. However, with small
number of partitions, the cache access time for recon�g-
urable caches is not signi�cantly greater than that of non-
recon�gurable designs.

4.5 Summary
Our results show that a recon�gurable cache organization
can be implemented within the framework of a conventional
SRAM cache design with relatively few minor changes. Our
results using an analytical model of the cache access time in-
dicate that for small number of partitions, the recon�gurable
cache organization does not incur signi�cant additional de-
lay over traditional cache structures. Larger number of par-
titions have the potential to increase the cache access time,
but this increase is still less than 6% with larger caches. Such
an increase may or may not a�ect the cycle time of the ma-
chine or the number of cycles required for a cache access,
depending on whether a conventional cache would limit the
cycle time of the microprocessor. If the access time of a con-
ventional cache is already somewhat below the latency of the
cache (in cycles) times the cycle time of the whole micropro-
cessor, recon�gurability could be added without negatively
impacting either the machine cycle time or the number of
cycles required for a cache access.

5. APPLICATION: INSTRUCTION REUSE
To provide quantitative evidence of the bene�ts of recon�g-
urable caches, we focus on one representative application of
such caches. This section evaluates the performance bene�ts
from recon�gurable caches for instruction reuse for media
processing benchmarks. Instruction reuse has been studied
in detail for SPEC benchmarks [7, 12, 13, 22, 23, 24]; how-
ever, it has not been studied in detail for media processing.
We anticipate that this technique will be e�ective for media
processing applications due to the inherent repetitiveness
and incremental gradation associated with the analog data
types that correspond to media data. Furthermore, previ-
ous work has showed that media applications are compute
bound (versus memory bound) after the insertion of software
prefetching [19]. Instruction reuse coupled with recon�g-
urable caches allows us to improve computation performance
using otherwise underutilized memory system resources.

Section 5.1 discusses our instruction reuse implementation.
Section 5.2 summarizes our simulation environment, sim-
ulated system, and benchmarks. Section 5.3 presents the
performance results.

5.1 Implementation of Instruction Reuse
Originally proposed instruction reuse bu�er imple-

mentation. We use an instruction reuse bu�er implemen-
tation similar to that proposed by Sodani and Sohi [23] and



Processor parameters

Processor speed 1 GHz
Issue width 8
Instruction window size 64
Functional units
- integer arithmetic 4
- 
oating point 4
- address generation 4
- VIS multiplier 2
- VIS adder 2

Branch prediction
- bimodal agree predictor size 2K
- return address stack size 32

Taken branches per cycle 1
Simultaneous speculated branches 16
Memory queue size 32

Memory hierarchy parameters

Cache line size 64 bytes
L1 instr cache size 64KB
L1 instr cache associativity 2-way
L1 data cache size 128KB (base)
L1 data cache associativity 4-way (base)
L1 data cache request ports 4
L1 data cache hit time 2 ns
Number of L1 MSHRs 12
L2 cache size (on-chip) 1MB
L2 cache associativity 4-way
L2 request ports 1
L2 hit time (pipelined) 20 ns
Number of L2 MSHRs 12
Total contentionless memory 100 ns
latency for L2 misses

Memory interleaving 4-way

Table 3: Default system parameters.

later re�ned by Molina et al. [17]. This scheme (referred to
as Sv in [23]) detects reuse based on operand values and was
shown to be the best performing scheme with large bu�er
sizes. In Sodani and Sohi's study, the processor is assumed
to have a �xed-sized 12-ported reuse bu�er and bu�er sizes
from 0.5KB to 12KB are considered. An instruction entry
in the reuse bu�er stores the source and destination operand
values and part of the PC to identify the instruction. When
an instruction is decoded, its source operand values are com-
pared with those in the instruction reuse bu�er entry corre-
sponding to this instruction. If there is a match, the result is
directly read from the bu�er and the execution stage is by-
passed. Load and store addresses as well as load values are
stored in the instruction reuse bu�er. To ensure consistency
of data, on a store, the implementation in [23] requires a fully
associative lookup of the reuse bu�er for possible matching
entries.

Instruction reuse bu�er implementation with recon-

�gurable caches. When implementing an instruction reuse
bu�er as a partition of a recon�gurable cache, we need to
make a few changes to the above design to address (i) the
limited number of ports for the cache (4 cache ports vs. 12
ports in the instruction reuse bu�er), (ii) the larger SRAM
sizes and the inability to perform associative lookups, and
(iii) increased latencies (we assume that the cache access
takes 2 cycles as opposed to one cycle for a smaller dedicated
instruction reuse bu�er). Consequently, our implementation
of the Sv scheme only stores values for arithmetic and logical
instructions and addresses for memory instructions. Other
instruction values (including branch outcomes and load val-
ues) are not stored in the instruction reuse bu�er. This
reduces the number of accesses to the instruction reuse par-
tition. For a further reduction, on a hit in the instruction
reuse bu�er, we do not update the state information for re-
placements. The bu�er is however updated on misses. For
each instruction, we store as many entries (sets of values) as
�t in the cache line (with 64-byte cache lines, �ve entries can
be stored and associatively checked for each instruction).

5.2 Simulation Framework
We use the RSIM simulator [18] to evaluate the bene�ts
from recon�gurable caches. RSIM is a user-level execution-
driven simulator that models the processor pipeline and
memory hierarchy in detail including contention for all re-

sources. We model an eight-way issue out-of-order proces-
sor that includes aggressive state-of-the-art features found in
several commodity microprocessors including non-blocking
loads and stores, speculative execution, media ISA exten-
sions, and software prefetching. Our simulator supports the
SPARC v9 ISA and Sun's VIS media ISA extensions. Ta-
ble 3 summarizes the parameters used for the processor and
memory subsystems.

The base cache system uses a 128KB four-way associative
�rst-level (L1) write-back data cache and a 1MB 4-way as-
sociative second-level (L2) write-back uni�ed cache. The
caches are non-blocking and allow support for multiple out-
standing misses. At each cache, 12 miss status holding reg-
isters (MSHRs) reserve space for outstanding cache misses
and combine a maximum of 8 multiple requests to the same
cache line.

For the recon�gurable cache system, we partition the L1
data cache into two two-way associative partitions of 64KB
each. As seen from Figure 2, the access time for this con-
�guration is 1.92ns, 4% slower than a design without recon-
�gurability. One of the partitions is used as a conventional
data cache while the other is used as an instruction reuse
bu�er (as described in Section 5.1) for the entire run of all
the benchmarks.

Table 4 summarizes the benchmarks we study. The input
to the benchmarks were chosen from the Intel Media Bench
(described at the Intel web site) and the UCLA MediaBench
suites [10]. This set of benchmarks was chosen to repre-
sent processing of a variety of media data types, including
images, video, audio, and speech. The benchmarks were
modi�ed to include a call to recon�gure the caches at the
beginning of the execution.

5.3 Performance Results
Figure 4 summarizes the results for all the benchmarks. For
each benchmark, four bars are shown representing (i) the
base system with a conventional data cache (base), (ii) the
base system with a recon�gurable L1 data cache with two
partitions { one for conventional data cache and the other for
instruction reuse (IR), (iii) the recon�gurable cache system
with \in�nite" ports and partition size for the instruction
reuse partition (IRideal), (iv) the base conventional cache



Benchmark Description (input)
cjpeg JPEG encoding of 1024x630 3-band image (rose16.ppm), uses VIS and software prefetching
djpeg JPEG decoding of 1024x630 3-band image (rose16.jpg), uses VIS and software prefetching

mpegdec MPEG2 video decoding of video stream into YUV components (meil6v2rec.m2v), uses VIS and
software prefetching

mpegenc MPEG2 video encoding of four 352x240 frames (I-B-B-P) (meil6v2rec.yuv), uses VIS
speechdec GSM speech decoding (clinton.pcm)
audiodec MPEG-2 audio decoding (clinton.pcm)
spchrecog Signal cepstral feature extraction in speech recognition (ex5 c1.wav)
spchsynth Natural language processing in speech synthesis (test data.in)

Table 4: Benchmarks used in this study.
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Figure 4: Simulation results for the bene�ts from using recon�gurable caches for instruction reuse.

system with half the L1 cache size and associativity (L1-);
i.e., with the L1 cache available in the recon�gurable cache
con�guration but without the bene�t of the instruction reuse
partition. The bars show execution cycles (or equivalently
inverse of the IPC) normalized to the cycles (inverse of IPC)
of the base con�guration. Each bar is divided further into
�ve components { busy cycles, functional unit (FU) stall cy-
cles, read hit stall cycles, read miss stall cycles, and other
stall cycles (e.g., instruction cache miss stalls). The busy
and stall cycles are calculated using the following conven-
tion, similar to that used in previous work (e.g., [19]). At
every cycle, the fraction of instructions retired that cycle
to the maximum retire rate is attributed to the busy time;
the remaining fraction is attributed as stall time to the �rst
instruction that could not be retired that cycle.

Comparing the base and IR con�gurations, we �nd that a
realistic implementation of instruction reuse with recon�g-
urable caches achieves IPC improvements of 1.04X to 1.20X

across our applications. The bene�ts are on reductions in
the functional unit stall and read hit stall components of the
execution cycles, enabled by bypassing the execution stage
due to hits in the instruction reuse bu�er.

Comparing the base and IRideal systems, the ideal instruc-
tion reuse con�guration with \in�nite" resources achieves
IPC improvements ranging from 1.11X to 1.60X. The dif-
ferences between the IRideal con�guration and the practi-
cal implementation of the instruction reuse bu�er (IR) stem
mainly from increased port contention for the SRAM par-
titions used for the instruction reuse bu�er (all the SRAM
partitions have the same number of ports as the original
SRAM cache { in our experiments, four). Enhancing the IR
model with additional �ltering mechanisms (e.g., con�dence
based �ltering [8]) may potentially address the increased
port contention and reduce the performance di�erences be-
tween the IR and IRidealmodels. However, this may involve
extra hardware support; in this paper, we restrict ourselves



to recon�gurable cache organizations with marginal changes
to the processor and do not study such aggressive implemen-
tations.

Finally, comparing the base and L1- results corroborates pre-
vious results that large caches are not critical for media pro-
cessing workloads. Across all our applications, changing the
�rst-level cache from a 4-way 128KB cache to a 2-way 64KB
cache had marginal impact (less than 1%) on performance.

6. RELATED WORK
Albonesi has concurrently proposed the use of \selective
cache ways" to selectively disable parts of the data arrays
of the cache to tradeo� performance for power conserva-
tion [1]. This work also proposes to use set-associativity
based partitioning and addressing of the data arrays, and
cache scrubbing for data consistency when partitions are
shut down. These methods are similar to those used in our
primary design. Our work, however, di�ers from this work in
several signi�cant ways. First, in contrast to simply turning
o� some partitions, our work suggests using the partitions
for alternate processor activities to enhance performance.
This requires a more general cache design that allows mul-
tiple address inputs into and multiple data outputs out of
the cache, requiring care to keep these multiple paths from
contending with each other. Some of our design decisions
may actually increase the power consumption in the cache
arrays. Second, we perform a detailed timing analysis with
the CACTI analytical model to determine the impact of our
design on cache access time. Albonesi's evaluation is focused
on power dissipation. Third, we evaluate the performance
bene�ts of the recon�gurable cache organization for instruc-
tion reuse [23] for media processing. Thus, we show that
cache storage can be used to improve computation speed for
media processing. Albonesi focuses on shutting o� parts of
the cache to save power, and focuses on SPEC benchmarks.

Although we have focused mainly on recon�gurable cache
organizations for general-purpose processors, they are appli-
cable to digital signal processors as well. The recently an-
nounced Texas Instruments TMS320C62xx series of proces-
sors include support for memory systems that can be con�g-
ured as cache or memory depending on the application. As
discussed in Section 5, recon�gurable caches can be used for
such a purpose as well. However, our recon�gurable cache
organization is general enough to include other applications
for the SRAM arrays including instruction reuse.

Several recent studies have examined instruction reuse; how-
ever, the key contribution of this paper is in the idea of
recon�gurable caches and not instruction reuse per se. Sim-
ilarly, several recent studies have proposed new architectures
targeted speci�cally for media processing applications (e.g.,
[21]). The focus of our work is on designing architectures
that can adaptively reuse general-purpose features for dif-
ferent activities for di�erent applications, including media
processing applications.

7. CONCLUSIONS AND FUTURE WORK
As general-purpose processors continue to be used for an
increasing number of application domains, it is important
to ensure that architectural features that use a signi�cant
fraction of the on-chip transistors are useful for most such

applications. Most current general-purpose processors de-
vote the largest fraction of the on-chip transistors to caches.
However, several important applications do not exploit large
caches. For example, media processing applications often
�nd large caches to be ine�ective due to their streaming
data accesses and large data sets [19]. As these applications
increase in importance, current general-purpose system de-
sign philosophy will force a tradeo� between resources for
media processing and other application domains.

This paper proposes an alternative design using recon�g-
urable caches. The design evaluated in this paper provides
the ability to divide the cache SRAM arrays into di�erent
partitions that can be used for di�erent processor activi-
ties. These activities can bene�t applications that could not
otherwise exploit conventional caches. Our design requires
very few modi�cations to conventional caches, exploiting the
natural implementation of set-associative caches today. De-
tailed timing analysis using a modi�cation of the CACTI
model shows small impact on cache access time.

We suggest several applications of recon�gurable caches. To
show quantitative bene�ts, we choose to evaluate instruction
reuse for media processing as a representative application.
Instruction reuse coupled with recon�gurable caches allows
us to improve computation performance using otherwise un-
derutilized memory system resources. We �nd IPC perfor-
mance bene�ts of between 4% and 20% from a recon�gurable
cache with two partitions, one used for conventional caching
and the other for instruction reuse. Because the cache ac-
cess time impact of recon�gurability is so low (4% for the
organization used in the IPC simulations) it is likely that
the overall microprocessor cycle time or the number of cy-
cles required to access the cache will not be a�ected. Even
if the microprocessor cycle time is increased by the cache
access time increase, the net performance bene�ts still re-
main positive. Furthermore, comparisons with a more ideal
implementation indicate that more aggressive implementa-
tions of instruction reuse can potentially achieve higher per-
formance bene�ts. Additionally, using more partitions for
other activities can further improve the performance bene-
�ts from this organization. It is important to note that the
bene�ts achieved in this paper were with relatively small
hardware and software changes to current general-purpose
processors.

In the future, we anticipate that the paradigm of reusing
on-chip storage for multiple processor activities can facili-
tate a number of architectural optimizations. We plan to
study some of the other applications suggested in Section 2.
We also plan to evaluate other options in the design space
for recon�gurable caches discussed in Section 3 (e.g., more
dynamic and frequent recon�guration).
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