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Abstract Media processing refers to the computing required for the

creation, encoding/decoding, processing, display, and com-

This paper aims to provide a quantitative understanding munication of digital multimedia information such as im-
of the performance of image and video processing applica-ages, audio, video, and graphics. The last few years
tions on general-purpose processors, without and with me-have seen significant advances in this area, but the true
dia ISA extensions. We use detailed simulation of 12 benchpromise of media processing will be seen only when ap-
marks to study the effectiveness of current architectural fea-plications such as collaborative teleconferencing, distance
tures and identify future challenges for these workloads. learning, and high-quality media-rich content channels ap-

Our results show that conventional techniques in current pear in ubiquitously available commodity systems. Fur-
processors to enhance instruction-level parallelism (ILP) ther out, advanced human-computer interfaces, telepres-
provide a factor of 2.3X to 4.2X performance improve- ence, and immersive and interactive virtual environments
ment. The Sun VIS media ISA extensions provide an adhold even greater promise.

ditional 1.1X to 4.2X performance improvement. The ILP One obstacle in achieving this promise is the high com-

eputational demands imposed by these applications. These
erequirements arise from the computationally expensive na-
ture of the algorithms, the stringent real-time constraints,
and the need to run many such tightly synchronized appli-
‘cations at the same time on the same system. For exam-
ple, a video teleconferencing system may need to run video

rocessing including encoding/decoding, audio processing,

nd a software modem simultaneously. As a result, such
applications currently display images of only a few square
inches at a few frames per second when running on general-
purpose processors. Full-screen images at 20-30 frames per
second could require more than two orders of magnitude
more performance.

CPU component of execution time, making 5 of the imag
processing benchmarks memory-bound.

The memory behavior of our benchmarks is character-
ized by large working sets and streaming data accesses. In
creasing the cache size has no impact on 8 of the bench
marks. The remaining benchmarks require relatively large
cache sizes (dependent on the display sizes) to exploit dat
reuse, but derive less than 1.2X performance benefits with
the larger caches. Software prefetching provides 1.4X to
2.5X performance improvement in the image processing
benchmarks where memory is a significant problem. With
the addition of software prefetching, all our benchmarks re-

vert to being compute-bound.
To meet the high computational requirements of emerg-

ing media applications, current systems use a combination

1 Introduction of general-purpose processors accelerated with DSP (or me-
dia) processors and ASICs performing specialized compu-
tations. However, benefits offered by general-purpose pro-
cessors in terms of ease of programming, higher perfor-

mance growth, easier upgrade paths between generations,
“This work is supported in part by an IBM Partnership awartgligor- and cost considerations argue for increasing use of general-
o sesmsss o o o e i et PUTPOSE PrOCESSOrS for media processing applications [6
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In the near futuremedia processings expected to be-
come one of the dominant computing workloads [6, 13].




tensions announced for most high-performance generalized by large working sets and streaming data accesses. In-
purpose processors (e.g., 3DNow! [15], AltiVec [19], creasing the cache size has no impact on 8 of the bench-
MAX [12], MDMX and MIPSV [9], MMX [18], MVI [4], marks. The remaining reuse data, but require relatively

VIS [23)). large cache sizes (dependent on the display sizes) to ex-

Unfortunately, in spite of the large amount of recent at- ploit the reuse and derive a performance benefit of less than
tention given to media processing [5, 6, 13], there is very 1.2X. Software-inserted prefetching provides 1.4X to 2.5X
little quantitative understanding of the performance of such performance improvement in the image processing bench-
applications on general-purpose systems. A major chal-marks where memory stall time is significant. With the ad-
lenge for such studies has been the large number of apdition of software prefetching, all of our benchmarks revert
plication classes in this domain (e.g., image, video, au-to being compute-bound.
dio, speech, communication, graphics, etc.), and the ab- The rest of the paper is organized as follows. Section 2
sence of any standardized representative benchmark setslescribes our workloads, the architectures modeled, and the
Consequently, in contrast to the much-researched SPECsimulation methodology. Section 3 presents our results on
SPLASH, and (more recently) TPC benchmarks, a numberthe impact of ILP features and VIS media extensions. Sec-
of fundamental questions still remain unanswered for me-tion 4 studies the performance of the cache system and the
dia processing workloads. For example, is computation orimpact of software prefetching. Section 5 discusses related
memory the primary bottleneck in these applications? How work. Section 6 concludes the paper.
effective are current architectural designs and media ISA
extensions? What are the future challenges for these work-,
loads? Given the lack of understanding of such issues, it i32 Methodology
not surprising that the media instruction set extensions an-
nounced by different processor vendors vary widely — from 2 1 \Workloads
13 instructions in MVI for Alpha [4] to 162 instructions in

AltiVec for PowerPC [19].
[19] We attempt to cover the spectrum of key tasks in im-

This paper is a first step in understanding the above is- . .
s age and video processing workloads. The kernels and ap-
sues to determine if and how we need to change the way we

; . lications in our benchmark suite form significant compo-
design general-purpose systems to support media process-
. = . . hents of many current and future real-world workloads such
ing applications. We focus on image and video workloads, . . . o .
. . . as collaborative teleconferencing, scene-visualization, dis-
an important class of media processing workloads, and at- : . : . -
L tance learning, streaming video across the internet, digi-
tempt to cover the spectrum of the key tasks in this class. b . . . )
. . . "tal broadcasting, real-time flight imaging and radar sens-
Our benchmark suite consists of 12 kernels and applications ) : X
o L ) .~ _ing, content-based storage and retrieval, online video cata-
covering image processing, image source coding, and vide

%ging, and medical tomography [8]. Future standards such

source coding. We use detailed S|mula_t|on to study aVa a5 JPEG2000 and MPEG4 are likely to build on a number
riety of general-purpose-processor architectural configura- .
of components of our benchmark suite.

tions, both with and without the use of Sun’s visual instruc- Table 1 . he 12 bench ks th
tion set (VIS) media ISA extensions. VIS shares a number able 1 summarizes the enchmarks that we use

of fundamental similarities with the media ISA extensions " this paper, and is divide(:j.into image processin% (Scjec-
proposed for other processors, and is representative of thd'on 2.1.1), image source coding (Section 2.1.2), and video

benefits and limitations of current media ISA extensions.  SOUrce coding (Section 2.1.3). These benchmarks are simi-
. . . . lar to some of the benchmarks used in the image and video
We start with a base single-issue in-order processor. In

this system, all the benchmarks are primarily compute- parts of the Intel Media Benchmark (described at the Intel
" ) . . web site) and the UCLA MediaBench [11].

bound. We find that conventional techniques in current . . .

processors to enhance instruction-level parallelism or ILP Al the_ Image bench_marks_ were run W'Fh 1024x640 pixel

(multiple issue and out-of-order issue) provide a factor of 3-band (i.e., channel) input images obtained from the Intel

2.3Xto 4.2X performance improvement for the benchmarks Med|a_lign;hn1ak:_l:. tThe w;jeo t;ﬁnc'\;\gélg(ssﬁfre ruré_thh
studied. The VIS media ISA extensions provide an addi- emeriovdest bit stream Irom the ortware sim-

tional 1.1X to 4.2X performance improvement. Our de- ulation Group that operates on 352x240 sized 3-band im-

tailed analysis indicates the sources and limitations of the 39€S: We did not_studyllarger (full-screen) sizes F’e%?”se
performance benefits due to VIS. The conventional ILP they were not readily available and would have required im-

techniques and the VIS extensions together significantly re_pract|cal simulation time.
duce the CPU component of execution time, making five of - ) )
1We did not use the Intel Media Benchmark or the UCLA MediaBenc

the Image processing penChmarks memory'bqund' directly because the former does not provide source codetenthtter
The memory behavior of these workloads is character- does not include image processing applications.




Image processing
Addition | Addition of two images$f16.ppmrose16.ppiusing mean of two pixel values

Blend Alpha blending of two images{16.ppmrose16.ppmwith another alpha imagevinter16.ppnjy; the operation
performed isist = alpha x srcl + (255 — alpha) x src2.
Conv General 3x3 image convolution of an imagfl6.ppm. The operation performed includes a saturation syum-

mation of 9 product terms. Each term corresponds to muitiglyhe pixel values in a moving 3x3 window
across the image dimensions with the values of a 3x3 kerngbma
Dotprod 16x16 dot product of a randomly-initialized 1048576-eletiamear array
Scaling Linear image scaling of an imagsf{6.ppm

Thresh Double-limit thresholding of an imagsf(L6.ppnu If the pixel band value falls within the low and high valugs
for that band, the destination is set to the map value forlihatl; otherwise, the destination is set to be the
same as the source pixel value.

Image source coding
Cjpeg JPEG progressive encoding$el6.ppm

Djpeg JPEG progressive decoding$el6.jpy

Cjpeg-np | JPEG non-progressive encodimggel6.ppm

Djpeg-np | JPEG non-progressive decodingdel16.jpy

Video source coding
Mpeg-enc| MPEG2 encoding of 4 frames (I-B-B-P frames) of tmeil6v2rechit stream. Properties of the bit stream
include frame rate of 30fps, bit rate of 5SMbps at the Main ped@iMain level configuration. The image
352x240 pixels in the 4:2:0 YUV chroma format, and is scated 704x480 display. The quantization tables
and the motion estimation search parameters are set tofddtdearameters specified by the MPEG group
Mpeg-dec| MPEG2 decoding of theneil6v2rewsideo bit stream into separate YUV components.

%)

Table 1. Summary of the benchmarks used in this study.

2.1.1 Image Processing ify the image. First, thecolor conversionand chroma-
decimationphases convert the source image from a 24-bit

Our image processing benchmarks are taken from the SurkeB representation domain to a 12 bit 4:2:0 YUV repre-

VIS Software Development Kit (VSDK), which includes 14 sentation. Next, a lineddCT image transfornphase con-

image processing kernels. These kernels include common i< the image into the frequency domain. Thantiza-

ir_nagehprocelssilngh ta;lks dS.UCh as gne—_band and thre_::f—barﬁﬁn phase then scales the frequency domain values by a
(1., channel) alpha blending (used in image composi Ing)’quantization value (either constant or variable). T

iingle-li_mit and doukple-limitdtrg)rlesholding .(used indcfhrorr.la- zag scanningndvariable-length (Huffman) codinghases
eying, image masking, and blue screening), an unCt'onsthen reorder the resulting data into streams of bits and en-

S.UCh azg_inera(lj atnd sipa:abledconvlc_)lutmn, C(;’PV':}?' INVeTode them as a stream of variable-length symbols based on
slon, adaition, dot product, and scaling (u_se IN € COre gatistical analysis of the frequency of symbols.
of many image processing codes like blurring, sharpening, L . .
. . Progressive image compressioses a compression al-
edge detection, embossing, etc.). We study all 14 of the . ) .
. gorithm that performs multiple Huffman coding passes on
VSDK kernels, but due to space constraints, we report re-

sults for only 6 representative benchmarkddition, blend, :Breelml?agliet to(lgggi(;]detg ?hsemlél:ge tis(;::r(;? 0:;3556;(332?85: c
conv, dotprod, scaling, and thresh 9 y 9 P P 9 9

of images seen on many web pages).
. The decoding process performs the inverse of the opera-
2.1.2  Image Source Coding tions for the encoding process in the reverse order to obtain

We focus on the Joint Photography Experts Group (JPEG)the original image from the compressed image.

standard and study the performance of the Release 6a codec

(encoder/dgcoder) from the Independent JPEG .G.rou.p. We> 1.3 Video Source Coding

study two different commonly used codecs specified in the

standard, a progressive JPEG codejpdg encoder and ~ We focus on the Motion Picture Experts Group-2 (MPEG2)

djpegdecoder), and a non-progressive JPEG codpped- video coding standard, and study the performance of the

np encoder andjpeg-npdecoder). version 1.1 codec from the MPEG Software Simulation
The JPEG encoding process consists of a number ofGroup.

phases many of which exploit properties of the human vi-  The first part of the video compression process consists

sual system to reduce the number of bits required to spec-of spatial compression similar to that described for JPEG



Processor speed 1GHz 2.2 Architectures Modeled

Issue width 4-way

Instruction wmdoyv siz€ 64 2.2.1 Processor and Memory System

Memory queue size 32

Branch prediction _ We study two processor models — an in-order processor
Bimodal agree predictor size 2K model (similar to the Compaq Alpha 21164, Intel Pen-
Return-address stack size 32 tium, and Sun UltraSPARC-II processors) and an out-of-
Taken branches per cycle 1

order processor model (similar to the Compaq Alpha 21264,
HP PA8000, IBM PowerPC, Intel Pentium Pro, and MIPS
R10000 processors). Both the processor models support

Simultaneous speculated branches | 16
Functional unit counts

Integer arithmetic units 2 h

Floating-point units 2 non-blocking Ioa_ds and stores. _

Address generation units 2 For the experiments with software prefetching, the pro-
VIS multipliers 1 cessor models provide support for software-controlled non-
VIS adders 1 binding prefetches into the first-level cache.

Functional unit latencies (cycles) The base system uses a 64KB two-way associative first-
Default integer/address generation | 1/1 level (L1) write-back cache and a 128KB 4-way associa-
Integer multiply/divide 712 tive second-level (L2) write-back cache. Section 4.1 dis-
Default floating point 4 cusses the impact of varying the cache sizes. All the caches
FP moves/converts/divides 4/4/12 ) .

Default VIS 1 are non-blocking and allow support for multiple outstand-

VIS 8-bit loads/multiply/pdist 1/3/3 ing misses. At each cache, 12 miss statgs holding regis-
ters (MSHRs) reserve space for outstanding cache misses

Table 2. Default processor parameters. and combine a maximum of 8 multiple requests to the same
cache line.

Cache line size 64 bytes Tables 2 and 3 summarize the parameters used for the

L1 data cache size (on-chip) 64 KB processor and memory subsystems. When studying the per-

L1 data cache associativity 2-way formance of a 1-way issue processor, we scale the number

L1 data cache request ports 2 of functional units to 1 of each type. The functional unit

L1 data cache hit time 2ns latencies were chosen based on the Alpha 21264 processor.

Number of L1 MSHRs 12 All functional units are fully pipelined except the floating-

L2 cache size (off-chip) 128K point divide (non-pipelined).

L2 cache associativity 4-way

L2 request ports 1 ) )

L2 hit time (pipelined) 20 ns 2.2.2 VIS Media ISA Extensions

Number of L2 MSHRs 12

The VIS media ISA extensions to the SPARC V9 architec-

Max. outstanding misses per MSHR | 8 - . . .
ture are a set of instructions targeted at accelerating media

Total memory latency for L2 misses 100 ns

Memory interleaving 4-way processing [10,.23]. Both our in-order and out-of-order pro-
cessor models include support for VIS.
Table 3. Default memory system parameters. The VIS extensions define the packed byte, packed word

and packed double data types which allow concurrent oper-
and includes the color conversion, chroma decimation, tions on eight bytes, four words (16-bits each) or two dou-
frequency transformation, quantization, zig-zag coding, ble words of fixed_-pointd_ata in a64-bi_t re_gister_. These_ data
and run-length coding phases. Additionally, MPEG2 has typeg allow VIS instructions t(_) exploit single-instruction-
an inter-frame predictive-compressionotion-estimation ~ Multiple-data (SIMD) parallelism at the subword level.
phase that uses difference vectors to encode temporal redur10St Of the VIS instructions operate on packed words or

dancy between macroblocks in a frame and macroblocks inPacked doubles; loads, stores, grdl st instructions op-
the following and preceding frames. Motion estimation is €rate on packed bytes. Many of the VIS instructions make

the most compute-intensive partrapeg-encode implicit assumptions about rounding and the number of sig-
nificant bits in the fixed-point data. Hence, their use require

The video decompression process performs the inverseensuring that they do not lead to incorrect outputs. We next
of the various encode operations in reverse order to get theprovide a short overview of the VIS instructions (summa-
decoded bit stream from the input compressed video. Therized in Table 4).
meil6v2bit stream is already in the YUV format, and con- Packed arithmetic and logical operations. The packed
sequently, our MPEG simulations do not go through the arithmetic VIS instructions allow SIMD-style parallelism to
color conversion phase discussed in Section 2.1.2. be exploited for add, subtract, and multiply instructions. To



Packed arithmetic and logical operations cache reuse. VIS also defines instructions to manipulate
Packed addition the graphics status register, a special-purpose register that
Packed subtraction stores additional data for various media instructions.

Ec?;ig? c?;il:';:f:st'on _ Overall, the f_unctionglity disc_:ussed above forVI_S is sim-
ilar to that of fixed-point media ISA extensions in other

Subword rearrangement and realignmen
Data packing and expansion general purpose processors (e.g., MAX [12], MMX [18],

—

Data merging MVI [4], MDMX [9], AltiVec [19]). The various ISA ex-
Data alignment tensions mainly differ in the number, types, and latencies of

Partitioned compares and edge operatiohs the individual instructions (e.g., MMX implements direct
Partitioned compares support for 16x16 multiply), whether they are implemented
Mask generation for edge effects in the integer or floating-point data path, and in the width

Memory-related operations of the data path. The most different ISA extension, the pro-
Partial stores posed PowerPC AltiVec ISA, adds support for a separate
Short loads and stores 128-bit vector multimedia unit in the processor.

Blocked loads and stores
Special-purpose operations

Pixel distance computation

Array address conversion for data reuge

Our VIS implementation is closely modeled after
the UltraSPARC-II implementation and operates on the
floating-point register file with latencies comparable to the

Access to the graphics status register UltraSPARC-II [23] (Table 2¥. The increase in chip area
. i ] associated with the VIS instructions was estimated to be less
Table 4. Classification of VIS instructions than 3% for the UltraSPARC-11 [10].

minimize implementation complexity, VIS uses a pipelined

series of two 8x16 multiplies and one add instructiontoem- 2.3 Methodology

ulate packed 16x16-bit multiplication. The VIS logical in-

Zt;'tjhctions allow logical operations on the floating-point data 231 Simulation Environment

Subword rearrangement and alignment. To facilitate We use the RSIM simulator [16] to simulate the in-order and
conversion between different data types, VIS supports sub-out-of-order processors described in Section 2.2. RSIM is
word rearrangement and alignment using pack, expanda user-level execution-driven simulator that models the pro-
merge (interleave), and align instructions. The subword re-cessor pipeline and memory hierarchy in detail including
arrangement instructions also include support for implicitly contention for all resources. To assess the impact of not
handling saturation arithmetic (limiting data values to the modeling system level code, we profiled the benchmarks on
minimum or maximum instead of the default wrap-around). an UltraSPARC-II-based Sun Enterprise server. We found
Partitioned compares and edge operationg-or branches, that the time spent on operating system kernel calls is less
VIS supports a partitioned compare that performs four 16- than 2% on all the benchmarks. The time spent on 1/O is
bit or two 32-bit compares in parallel to produce a mask that less than 15% on all the benchmarks execepeg-decThis

can be used in subsequent instructions. VIS also supportdenchmark experiences an inflated I/O component (45%)
the edge instruction to generate masks for partial stores thabecause of its high frequency of file writes. In a typical sys-
can eliminate special branch code to handle boundary contem, however, these writes would be handled by a graphics
ditions in media processing applications. accelerator, significantly reducing this component. Since
Memory-related operations. For memory instructions, our applications have small instruction footprints, our sim-
VIS supports partial stores that selectively write to parts of ulations assume all instructions hit in the instruction cache.
the 64-bit output based on an input mask.  Short loads All the applicationd were compiled with the SPARC
and stores transfer 1 or 2 bytes of memory to the registerSC4.2 compiler with the -xO4 -xtarget=ultral/170
file. Blocked loads and stores transfer 64 bytes of data-xarch=v8plusa -dalignoptions to produce optimized code
between memory and a group of eight consecutive VIS reg-for the in-order UltraSPARC processor.

isters without causing allocations in the cache. 7YY — | | o the
Special-purpose operationsThe pixel distance computa- - UL PRCRE 02 0 I Conared fo e ineg

tion (pdi st ) instruction is primarily targeted at motion es- 3We changed the 14 image processing kernels from the Sun V8DK t
timation and computes the sum of the absolute differencesskew the starting addresses of concurrent array accesdasenil small
between corresponding 8-bit components in two packedinnermost loops. This reduced cache conflicts and branchreuitions

: S : _ leading to 1.2X to 6.7X performance benefits. To facilitatedifying the
bytes' Theirraymstructlon IS mamly targeted at3b graph applications for VIS, we replaced some of the key routinethanJPEG

ics .render.ing applications and converts 3D fixed-point co- ang MPEG applications with equivalent routines from the SletiaLib
ordinates into a blocked byte address that allows for greateribrary.




2.3.2 VIS Usage Methodology algorithm developed by Mowry et al. [14].

We are not aware of any compiler that automatically modi- .
fies media processing applications to use media ISA exten-2-3-4 Performance Metrics

sions. For our experiments studying the impact of VIS, we e yse the execution time of the system as the primary met-
manually modified our benchmarks to use VIS instructions yijc tg evaluate the performance of the system, while also re-
based on the methodology detailed below. porting the individual components of execution time. With
We profiled the applications to identify key procedures out-of-order processors, an instruction can potentially be
and manually examined these procedures for loops that satpyerlapped with instructions preceding and following it. We
isfied the following three conditions: (1) The loop body therefore use the following convention to identify the differ-
should have no loop-carried dependences or control depengnt components of execution time. At every cycle, the frac-
dences that cannot be converted to data dependences (oth@bn of instructions retired that cycle to the maximum retire
than the loop branch). (2) The key computation in the 100p rate is attributed to the busy time; the remaining fraction
body must be replaceable with a set of equivalent fixed- js attributed as stall time to the first instruction that could
point VIS instructions. The loss in accuracy in this stage, not be retired that cycle. We also study other metrics such
if any, should be visually imperceptible. (3) The poten- as dynamic instruction counts, branch misprediction rates,

tial beneﬂt from VIS should be more than the overhead cache miss ratesy MSHR OccupancieS, and prefetch counts
of adding VIS; VIS overhead can result from subword re- for further insights into the system behavior.

arrangement instructions to convert between packed data
types or from alignment-related instructions. 3
For loops that satisfied the above criteria, we strip-mined
or unrolled the loop to isolate multiple iterations of the loop ) o
body that we then replaced with equivalent VIS instruc-  FOr each benchmark, Figure 1 presents execution times
tions. We used the inline assembly-code macros from thefor three variations of our base architecture, each without
Sun VSDK for the VIS instructions; this minimizes code VIS (the first set of three bars) and with VIS (the second
perturbation and allows the use of regular compiler opti- S€t of three br_:\rs). _The thr_(_ae_ architecture variati_ons are (i)
mizations. Wherever possible, we tried to use proceduresn-order and single issue, (ii) in-order and 4-way issue, and

available from the Sun VSDK Kit and the SUN MediaLib (iii) out-of-order and 4-way issue. On the VIS-enhanced
library routines that were already optimized for VIS. architecture, we use the VIS-enhanced version of the appli-

Our benchmarks use all the VIS instructions except for cation as mentioned in Section 2. The execution times are

the array and blocked load/store instructions. Array in- Normalized to the time with the in-order single-issue pro-
structions are targeted at 3D array accesses in graphic§€Ssor. For all the benchmarks, the execution time is di-
loops, and are not applicable for our applications. Blocked vided into the busy component, the functional unit stall (FU
loads and stores are primarily targeted at transfers of largeStall) component, and the memory component. The mem-
blocks of data between buffers without affecting the cache OTY componentis shown divided into the L1 miss and L1 hit
(e.g., in operating system buffer management, networking,Components.

memory-mapped I/O). We did not use these instructions

since the Sun VSDK does not provide inline assembly-code3.1  Impact of Conventional ILP Features

macros to support them. The alternative of hand-coded as-

sembly could result in lower performance since itis hardto  This section focuses on the system without the VIS me-
emulate the compiler optimizations associated with moderndia ISA extensions (the left three bars for each benchmark
superscalar processors by hand [22]. Note that both the arin Figure 1).

ray and blocked load/store instructions are unique to VIS Overall results. Both multiple issue and out-of-order issue
and are not supported by other general-purpose ISA extenprovide substantial reductions in execution time for most of
sions. our benchmarks. Compared to a single-issue in-order pro-
cessor, on the average, multiple issue improves performance
by a factor of 1.2X (range of 1.1X to 1.4X), while the com-
bination of multiple issue and out-of-order issue improves
We studied the applicability of software prefetching for the performance by a factor of 3.1X (range of 2.3X-4.2X).
benchmarks where the cache miss stall time is a significantAnalysis. Compared to the single issue processor, we find
component of the total execution time20%). We identi-  that multiple issue achieves most of its benefits by reduc-
fied the memory accesses that dominate the cache miss staihg the busy CPU component of execution time. Data, con-
time, and inserted prefetches by hand for these accessedrol, and structural dependences prevent the CPU compo-
We followed the well known software prefetching compiler nent from attaining an ideal speedup of 4 from a 4-way is-

Improving Processor Performance

2.3.3 Software Prefetching Algorithm
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Figure 1. Performance of image and video benchmarks.
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sue processor, reflected in the increased functional unit ancbry stall time. A large fraction of the stall times due to data,

L1 hit memory stall time.

Some of the benchmarks see additional memory laten-
cies when the number of outstanding misses to one cach

line (MSHR) increases beyond the maximum allowed limit

of 8. This is caused by the higher use of small data types
associated with media applications which leads to a hig
frequency of accesses for each cache line (e.g., 64 pixe

control, and structural dependences, as well as MSHR con-

tention, is now overlapped with other useful work. This is

seen in the reduction in the FU stall and L1 hit components
of execution time. Additionally, out-of-order issue can bet-

ter exploit the non-blocking loads feature of the system by
h allowing the latency of multiple long-latency load misses to
pe overlapped with one another. Our results examining the

writes in a 64-byte line). Since the processors do not stall MSHR occupancies at the cache indicate that while there is
increased load miss overlap in all the 12 benchmarks, only

on writes, in benchmarks with small loop bodies (eaddli-
tion, cjpeg djpeg, this leads to a backup of multiple writes.

This backup leads to contention for the MSHR that even-
tually prevents other accesses from being serviced at th

cache.

2 to 3 misses are overlapped in most cases. The total capac-
ity of 12 MSHRs is never fully utilized for load misses in

éalll our benchmarks.

Overall, the impact of the various ILP features is qualita-
Out-of-order issue, on the other hand, improves perfor- tively consistent with that described in previous studies for
mance by reducing both functional unit stall time and mem- scientific and database workloads. Quantitatively, these ILP



features are substantially more effective for the image and3.2.2 Benefits from VIS
video benchmarks than for previously reported online trans-
action processing (OLTP) workloads [21], and comparable
in benefit to previously reported scientific and decision sup-

ort system (DSS) workloads [1, 17, 21]. . . . . .
P Y ( ) [ ] former. Each bar divides the instructions into the Functional

It must be noted that the performance of the in-order is- unit (FU, combines ALU and FPU), Branch, Memory, and
sue processor is dependent on the quality of the CompilerVIS Catégories. The use of VIS ins';ructions'provides ,a sig-

used_tcly ;(I:Dge;glzgfzcode. _Cl)ur e‘?&ﬁ’er'm?ms use tt_he_ COMzificant reduction in the dynamic instruction count for all
mercia - COMPIIET WITh maximum optimiza- 1o penchmarks. The reductions in the dynamic instruc-

tions t_urned on for j[he m-order.UItraSPARC processar. To tion count correlate well with the performance benefits from
ry to isolate compiler scheduling effects, we studied two VIS. We next discuss the sources for the reductions in the
other processor configurations with single-cycle functional dynamic instructions
unit latencies and functional unit latencies comparable to Reductions in FU in.structions The VIS packed arith-
the UItraSPARC_ processor. In b.Oth thes? c_onflguratlons,metic and logical instructions allow multiple (typically
our results continued tp be qual_ltat_l\_/ely similar; the out- four) arithmetic instructions to be replaced with one VIS
pf-orderprocessor Contlnges to significantly outperform the instruction. Consequently, all the benchmarks see signif-
m—ord_er processor. The impact c.)f fu_ture, more adva_nced,icant reductions in the FU instructions with correspond-
compiler optimizations, however, is still an open question. ing, smaller, increases in the VIS instruction count. Ad-
Interestingly, a recent position paper [6] on the impact of gjtjonally, the SIMD VIS instructions replace multiple it-
multimedia workloads on general-purpose processors congrations in the original loop with one equivalent VIS it-
jectures that complex out-of-order issue techniques develgration. This reduces iteration-specific loop-overhead in-
oped for scientific and engineering workloads (e.9., SPEC) stryctions that increment index and address values and com-

may not be needed for multimedia workloads. Our results yte pranch conditions, further reducing the FU instruction
show that, on the contrary, out-of-order issue can provide ;o nt.

significant performance benefits for the image and video e ctions in branch instructions. All the benchmarks

Figure 2 presents some additional data showing the distribu-
tion of the dynamic (retired) instructions for the 4-way out-
of-order processor without and with VIS, normalized to the

workloads. use the edge masking and partial store instructions to elim-
inate testing for edge boundaries and selective writes. They
3.2 Impact of VIS Media ISA Extensions also use loop unrolling when replacing multiple iterations

with one equivalent VIS iteration. These lead to a reduc-
tion in the branch instruction count for all the benchmarks.
This section discusses the performance impact of theFor some applications, branch instruction counts are also
VIS ISA extensions (comparing the left-hand three bars andreduced because of the elimination of the code to explic-
right-hand three bars for each benchmark in Figure 1). itly perform saturation arithmetic (mainly iconv* and the
JPEG applications), and the use of partitioned SIMD com-
pares (mainly irthresh.
3.2.1 Overall Results Many of the branches eliminated are hard-to-predict
branches (e.g., saturation, thresholding, selective writes),
The VIS media ISA extensions provide significant perfor- |eading to significant improvements in the hardware branch
mance improvements for all the benchmarks (factors of misprediction rates for some of our benchmarks (branch
1.1X to 4.0X for the out-of-order SyStem, 1.1Xto 7X across misprediction rate decreases from 10% to 0%donvand
all configurations). On average, the addition of VIS im- from 6% to 0% forthresh?.
proves the performance of the single-issue in-order systemReductions in memory instructions. With VIS, memory
by a factor of 2.0X, the performance of the 4-way-issue in- accesses operate on packed data as opposed to individual
order system by a factor of 2.1X, and the performance of media data. Consequently, most of the benchmarks see sig-
the 4-way issue out-of-order system by a factor of 1.8X. pificant reductions in the number of memory instructions
Multiple issue and out-of-order issue are beneficial even (and associated cache accesses). This reduces the MSHR
with VIS. On average, with VIS, compared to a single-issue contention discussed in Section 3.1.
in-order processor, multiple issue achieves a factor of 1.2X  Most of the memory instructions eliminated are cache
performance improvement, while the combination of mul- hits, without a proportional decrease in the number of
tiple issue and out-of-order issue achieves a factor of 2.7X
performance _|mprovement. The reasons for these perfor-only in theconvcode. Theadd blend anddotprodkernels are written in
mance benefits from ILP features are the same as for thene non-saturation mode. These could, however, potgnbalrewritten to
systems without VIS. check for saturation in which case they would also see siréaefits.

4The original source code from the Sun VSDK checks for sabmat
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Figure 2. Impact of VIS on dynamic (retired) instruction cou nt.

misses, causing higher L1 cache miss rates with VIS. Theing/unpacking between packed-byte pixels and packed-
higher miss rate and the lower instruction count allows addi- word operands). This results in extra overhead that limits
tional load misses to appear together within the instruction the performance benefits from VIS (on the average, for our
window and be overlapped with each other. However, the benchmarks, 41% of the VIS instructions are for subword
system still rarely sees more than 3 load misses overlappedearrangement and alignment). Overhead is also increased
concurrently. when multiple VIS instructions are used to emulate one op-
Pixel distance computation for mpeg-enc. mpeg-enc  eration (e.g., 16x16 multiply ilotprod or when the data
achieves additional benefits from the special-purpose pixelneed to be reordered to exploit SIMD (e.g., byte reordering
distance computatiomp@i st ) instruction in the motion es-  in the color conversion phase in JPEG).

timation phase. Thedi st instruction allows a sequence Limited parallelism and scheduling constraints.Most of

of 48 instructions to be reduced to one instruction [23], sig- the packed arithmetic instructions operate only on packed
nificantly reducing the FU, branch, and memory instruction words or packed double words. This ensures enough bits to
counts. The elimination of hard-to-predict branches to per- maintain the precision of intermediate values. However, this
form comparisons and saturation improves the branch mis-limits the maximum parallelism to 4 (on 16-bit data types),
prediction rate from 27% to 10%. even in cases when the operations are known to be per-
formed on smaller data types (e.g., 8-bit pixels). The limit
on the SIMD parallel patfjn combination with contention

for VIS functional units, limits the benefits from VIS on
Examining the variation of performance benefits across thesome of our benchmarks (most significantlympeg-enk
benchmarks, we observe that the JPEG applicatiopsg- Cache miss stall time As discussed earlier, the reductions
deg anddotprodexhibit relatively lower performance ben- in memory instructions mainly occur for cache hits. The
efits (factors of 1.1X to 1.5X) compared to the remaining VIS instructions do not directly target cache misses though
benchmarks (factors of 2.8X to 4.2X). We next discuss fac- there are indirect benefits associated with increased load
tors limiting the benefits from VIS. miss overlap due to instruction count reduction (discussed
Inapplicability of VIS. The VIS media ISA extensions are in Section 3.2.2).

not applicable to a number of key procedures in the JPEG

applications ananpeg-dec For example, the JPEG appli- 3.3 Combination of ILP and VIS

cations (especially the progressive versions) spend a large

fraction of their time in the variable-length Huffman cod- The combination of conventional ILP features and VIS
ing phase. This phase is inherently sequential and operategytensions achieves an average factor of 5.5X perfor-
on variable-length data types, and consequently cannot bgnance improvement (range of 3.5X to 18X) over the base
optimized using VIS instructiorisOther examples of code  gjngle-issue in-order processor. The benefits from VIS are
segments in the JPEG and MPEG applications where VISychieved with a much smaller increase in the die area com-
could not be applied include bit-level input/output stream py5red to the ILP features.

manipulation, scatter-gather addressing, quantization, and op the base single-issue in-order processor, all the
saturation arithmetic operations not embedded in aloop.  penchmarks are primarily compute-bound. With ILP fea-
VIS overhead. All our benchmarks use subword rear- yres and VIS extensionsjpeg djpeg andmpeg-encon-

rangement and alignment instructions to get the data ingnye to spend most of their execution time in the proces-
a form that the VIS instructions can operate (e.g., pack-

3.2.3 Limitations of VIS

6The MIPS MDMX provides support for a larger size accumulhait

51t is instructive to note that many media processors (etw, Mit- allows greater parallelism without losing the precisiorthef intermediate
subishi VLIW Media Processor and Samsung Media Signal Bemrg result [9]. The PowerPC AltiVec supports a larger 128-bitadpath to
have a special-purpose hardware unit to handle the vaiiabigh coding. increase the parallelism[19].




sor sub-system (87% to 97%). Five of the image process-erations and therefore need to operate on multiple image-
ing kernels, however, now spend 55% to 66% of their total sized buffers (as opposed to blocks-sized buffecgiag-np
time in memory stalls. The strong compute-centric perfor- anddjpeg-np. The reuse of these 352x240 buffers across
mance benefits from ILP features and VIS extensions shiftthe frames in the video leads to 1.1X performance bene-
the bottleneck to the memory sub-system for these benchdits with 512K (mpeg-derand 1M fnpeg-engcache sizes.

marks. The remaining 4 applicationsofy cjpeg djpeg Larger image sizes would require larger caches; for exam-
and mpeg-der spend between 20% to 30% of their total ple a 1024x1024 image would require almost a factor of
time on memory stalls. 12X increase.

Impact of varying L1 caches. We also performed ex-
4 Improving Memory System Performance periments varying the size of the L1 cache from 1K to

64K while keeping the L2 cache fixed at 128K. Our results
showed that the L1 cache size had no impact on five of the

the benchmarks. Section 4.1 discusses the effectiveness df'29€ Processing kernels. On the remaining benchmarks,

: ; : 64K L1 configuration outperforms the 1K L1 configura-
caches, and Section 4.2 discusses the impact of softwar& )
prefetching P tion by factors of 1.1X to 1.3X; 4K-16K L1 caches achieve

within 3% of the performance of the 64K L1 cache con-
figuration. Small data structures other than the main data,
such as tables for convolution, quantization, color conver-

_ . . sion, and saturation clipping, are responsible for these small
Impact of varying L2 cache size.We varied the L2 cache first-level working sets. At 64K L1 caches, memory stall

size from 128K to 2M, keeping the L1 cache fixed at 64K. time is mainly due to L1 hits (mainly related to MSHR con-
Our results (not shown here due to lack of space) Showedtention) or to L2 misses

that increasing the size of the L2 cache has no impact on
the performance of the 6 image processing kernels and the )
cjpeg-npand djpeg-npapplications. The remaining four 4.2 Impact of Software Prefetching
applicationscjpeg djpeg mpeg-encandmpeg-decreuse
data; but the cache size needed to exploit the reuse depends Figure 3 summarizes the execution time reductions from
on the size of the display. For our input image sizes, L2 software prefetching relative to the base system with VIS
cache sizes of 2M capture the entire working sets for all the (with 64K L1 and 128K L2 caches). We do not report
four benchmarks, and provide 1.1X to 1.2X performance results forcjpeg-np djpeg-npand mpeg-encsince these
improvement over the default 128K L2 cache. With the 2M benchmarks spend less than 6% of their total time on L1
cache sizes, memory stall time is between 7-9% on all thecache misses. Our results show that software prefetching
applications and is dominated by L1 hit time (due to MSHR achieves high performance improvements for the six image
contention) and L2 hit time. processing benchmarks (an average of 1.9X and a range of
The image processing kernels have streaming data acd.4X to 2.5X. Thecjpeg djpeg andmpeg-debenchmarks
cesses to a large image buffer with no reuse and low com-exhibit relatively small performance improvements. Over-
putation per cache miss. Consequently, they exhibit highall, after applying software prefetching, all our benchmarks
memory stall times unaffected by larger cachefpeg-np revert to being compute bound.
anddjpeg-npdo not see any variation in performance with For the image processing kernels, a significant fraction
larger caches because of their negligible memory compo-of the prefetches are useful in completely or partially hid-
nents. These applications implement a blocked pipeline al-ing the latency of the cache miss with computation or with
gorithm that performs all the computation phases on 8x8- other misses. The addition of software prefetching also in-
sized blocks at a time, reducing the bandwidth requirementscreases the utilization of cache MSHRs; in many of the im-
and increasing the computation per miss. Tigegand age processing kernels, more than 5 MSHRs are used for a
djpegapplications differ from their non-progressive coun- large fraction of the time. The remaining memory stall time
terparts in the progressive coding phase where they perfornis mainly due to late prefetches and resource contention.
a multi-pass traversal of the buffer storing the DCT coeffi- Late prefetches (prefetches that arrive after the demand ac-
cients. The low computation per miss in this phase com- cess) arise mainly because of inadequate computation in the
bined with the reuse of the image-sized (1024x640 pixels) loop bodies to overlap the miss latencies. Contention for
buffer results in a 1.2X performance benefit from increas- resources occurs when multiple prefetches are outstanding
ing the cache size to 2M. Larger images would increaseat a time. These effects are similar to those discussed in
the working set requiring larger caches. For example, aprevious studies with scientific applications for ILP-based
1024x1024 image would require a 4M cache sinepeg- processors [20].
encand mpeg-degerform inter-block distance vector op- The other benchmarksjpeg djpeg andmpeg-dersee

This section studies memory system performance for

4.1 Impact of Caches
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Figure 3. Effect of software-inserted prefetching.

lower performance benefits primarily because the fraction show the benefits from 1/O prefetching, software restruc-
of memory stall time is relatively low and includes an L1 turing to use SIMD without hardware support, and profile-
hit component (mainly due to MSHR contention). Soft- driven software prefetching [25, 26]. However, the studies
ware prefetches do not address the L1 component. Secassume a simplistic processor model with blocking loads
ond, incjpeganddjpeg the prefetches are to memory lo- and do not study the effect of media ISA extensions. Bilas
cations that are indirectly addressed (of the form A[BJ[i]]). et al. develop two parallel versions of the MPEG decoder
Consequently, the prefetching algorithm is unable to dis- and present results for multiprocessor speedup, memory re-
tinguish between hits and misses and is constrained to is-quirements, load balance, synchronization, and locality [3].
sue prefetches for all accesses. The resulting overhead du8imilar to our results, they also find that the miss rates for
to address calculation and cache contention limits perfor-352x240 images on “realistic” cache sizes are negligible.
mance (seen as increased Busy and FU stall compdhents

finally, as_before, late prefetches_ and resource gontentlorb Conclusions

also contribute to the lower benefits from prefetching.

Media processing is a workload of increasing importance
for desktop processors. This paper focuses on image and
video processing, an important class of media processing,

Most of the papers discussing instruction-set extensionsand aims to provide a quantitative understanding of the per-
for multimedia processing have focused on detailed descripformance of these workloads on general-purpose proces-
tions of the additional instructions and examples of their sors. We use detailed simulation to study 12 representa-
use [4, 9, 12, 15, 18, 19, 23]. The performance character-tive benchmarks on a variety of architectural configurations,
ization in these papers is usually limited to a few sample poth with and without the use of Sun’s visual instruction set
code segments and/or a brief mention of the benefits an{v|S) media ISA extensions.
ticipated on larger applications. Eyre studies the applica-  Our results show that conventional techniques in current
bility of general-purpose processors for DSP applications; processors to enhance ILP (multiple issue and out-of-order
however, the study only reports high-level metrics such asjssue) provide a factor of 2.3X to 4.2X performance im-
MIPS, power efficiency, and cost [7]. provement for the image and video benchmarks. The Sun

Daniel Rice presents a detailed description of VIS and 8 v/|S media ISA extensions provide an additional 1.1X to
image processing applications without and with VIS [22]. 4.2X performance improvement. The benefits from VIS are
The study reports speedups of 2.7X to 10.5X on an actualachieved with a much smaller increase in the die area com-
UltraSPARC-based system, but does not analyze the caus@ared to the ILP features.
of performance benefits, the remaining bottlenecks, or the  oyr detailed analysis indicates the sources and limita-
impact of alternative architectures. tions of the performance benefits due to VIS. VIS is very

Yang et al. look at the benefits of packed floating-point effective in exploiting SIMD parallelism using packed data
formats and instructions for graphics but assume a per-types, and can eliminate a number of potentially hard-to-
fect memory system [24]. Bharghava et al. study some predict branches using instructions targeted towards satu-
MMX-enhanced applications based on Pentium-based sysration arithmetic, boundary detection, and partial writes.
tems; but again, no detailed characterization of performancespecia|_purpose instructions suchpalistachieve high ben-
bottlenecks or the impact of other architectures is done [2]. efits on the targeted application, but are too specialized to
Zucker et al. study MPEG video decode applications and yse in other cases. Routines that are sequential and operate

“Some of the image processing kernels see a reduction in tHe@m- on Va'.’iable data types_, VIS inStrucFion (_)verhead, cache miss
ponent because of the reduction in instructions and betrerdsiing when  Stall times, and the fixed parallelism in the packed arith-
loops are unrolled for the prefetching algorithm [14]. metic instructions limit the benefits on the benchmarks.

5 Related Work




On our base single-issue in-order processor, all the [5] T. M. Conte et al. Challenges to Combining General-
benchmarks are primarily compute-bound. Conventional Purpose and Multimedia Processors. IHEE Computer
ILP features and the VIS instructions together significantly pages 33-37, Dec 1997. o
reduce the CPU component of execution time, making 5 6] K. Diefendorff and P. K. Dubey. How Multimedia Work-
of our image processing benchmarks memory-bound. The f;fjswélggq%g%e Processor Design.IEEE Micro, pages
memory behavior of these workloads is characterized by (71 J. Eyré. Assessiné General-Purpose Processors for PSP A
large working sets and streaming data accesses. Increas-  pjications. Berkeley Design Technology Inc. presentation
ing the cache size has no impact on the image processing 1998.
kernels and the non-progressive JPEG applications. This is [8] International Organisation for Standardisation — IEQ
particularly interesting considering current trends towards JTC1/SC29/WG11MPEG 98/N245WMIPEG-4 Applications
large on-chip and off-chip caches. The remaining bench- Document1998. _ » o
marks require relatively large cache sizes (dependent on the [°] E: Killan. MIPS Extension for Digital Media with 3D.
display sizes) to exploit data reuse, but derive less than 1.2X Slides presented at Microprocessor Forum, October 1996.

4 ¢ ! *““M[10] L. Kohn et al. The Visual Instruction Set (VIS) in Ultra-
performance benefits with the larger caches. Software- SPARC. INCOMPCON Digest of Papersarch 1995.
inserted prefetching achieves 1.4X to 2.5X performance [11] C. Lee et al. MediaBench: A Tool for Evaluating and
benefits on the image processing kernels where memory Synthesizing Multimedia and Communications Systems. In
stall time is significant. MICRO-3Q 1997.

With the addition of software prefetching, all our bench- [12] R. B. Lee. Subword Parallelism with MAX-2.
marks revert to being compute-bound. Architectural opti- 1, 5 '\R/I.ICBr(.)’L\(/??-:!UanI:]]S I%/lé(é).lspr?q?t? ?Al(;jsig'égggzgiln%?i New De.
m|za_t|ons that improve computfitlon time (e.g., _mulﬂpro- sign Target. INEEE MICRQ pages 6-9, Aug 1996.
cessing) may be useful to exploit greater parallelism. Such [14] T Mowry. Tolerating Latency through Software-controlled
efforts are likely to expose the memory system bottleneck data prefetching PhD thesis, Stanford University, 1994,
yet again, possibly requiring additional novel memory sys- [15] S.Oberman et al. AMD 3DNow! Technology and the K6-2
tem techniques beyond conventional software prefetching. Microprocessor. I'HOTCHIPS101998.

In the future, we plan to explore new architectural tech- 16] V. S. Paiet al. RSll\/_l:ASmulator forShared-Memqry Mul-
. . tiprocessor and Uniprocessor Systems that Exploit ILP. In
niques for general-purpose processors to support media pro-
cessing workloads. We also plan to expand our study to in-
clude other media processing applications such as speechyz7
audio, communication, and natural language interaction.
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